skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Houshmand, Arian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    This paper studies congestion-aware route- planning policies for Autonomous Mobility-on-Demand (AMoD) systems, whereby a fleet of autonomous vehicles provides on- demand mobility under mixed traffic conditions. Specifically, we first devise a network flow model to optimize the AMoD routing and rebalancing strategies in a congestion-aware fashion by accounting for the endogenous impact of AMoD flows on travel time. Second, we capture reactive exogenous traffic consisting of private vehicles selfishly adapting to the AMoD flows in a user- centric fashion by leveraging an iterative approach. Finally, we showcase the effectiveness of our framework with a case- study considering the transportation sub-network in New York City. Our results suggest that for high levels of demand, pure AMoD travel can be detrimental due to the additional traffic stemming from its rebalancing flows, whilst the combination of AMoD with walking or micromobility options can significantly improve the overall system performance. 
    more » « less
  2. null (Ed.)